
Method
dispatching
techniques

in Python

The key in making great and growable systems is
much more to design how its modules

communicate rather than what their internal
properties and behaviors should be.

— Alan Kay on Messaging

http://c2.com/cgi/wiki?AlanKayOnMessaging

Message passing

It's a way to request behavior from an entity in a distributed system.

To communicate via message is a 4-step process

Creating the message:

Sending & Delivering the message:

Receiving the message:

Processing the message:

This last step is method dispatching!!

Method Dispatching
in Python

It's the process to select which action depending on the the

message.

def __postoffice__(message):
 recipient = message.recipient
 name = message.contents.name
 args = message.contents.args
 kwargs = message.contents.kwargs

 if not hasattr(recipient, name):
 raise AttributeError

 member = getattr(recipient, name)
 return member(*args, **kwargs)

in (real) Python

Some differences:

1. The post offices are responsibilities of each class.

2. There are two separated methods to redefine method

dispatching: one for getting and another for setting

3. The message is only the member's name

__getattribute__

It's the equivalent to __postoffice__

def __getattribute__(self, membername):
 """Get the value with the key <membername> inside
 self.__dict__; if not, look for the same key
 inside type(self).__dict__; if not, look for
 it through the class hierarchy. If not, call
 self.__getattr__(membername) if exists."""

Intercepts all the attemps to access a member before trying to

retrieve it from the instance.

__getattr__

It's a fallback for when the member does not exist.

def __getattr__(self, membername):
 """If exists inside the instance, it's called when
 the membername was not found at all. It can return
 an object or raise AttributeError."""

Intercepts the attemps to access a member only if it does not exist.

__setattr__

It's the post office when trying to assign a value.

def __setattr__(self, membername, value):
 """Replace the entry in self.__dict__ for the
 membername with value.

 (Well, actually, it's a little bit more
 complicated)."""

Intercepts all the attemps to set a member with the specified value.

IMPORTANT:

if not called explicitly, the magic methods are never called from the

instance but from its class.

from types import MethodType as method
class A(): pass

a = A()
a.__setattr__ = \
 method(lambda : print('Doing nothing...'), a)
a.test = 1

Fuzzy APIs

If I make a little typo, I want the API to be smart
enough to figure out which member I'm referring

and get it fixing the typo.

The idea is to use the most similar method without ambiguity when

it's not found in the instance.

We use difflib and SequenceMatcher to calculate similarity:

from difflib import SequenceMatcher
def similarity(n, m):
 return SequenceMatcher(None, n, m).ratio()

And add __getattr__() to the class.

def __getattr__(self, name):
 issimilar = lambda n: similarity(n, name) >= 0.8
 matches = list(filter(issimilar, dir(self)))
 if not matches or len(matches) > 1:
 raise AttributeError()

 return getattr(self, matches[0])

Remeber it's only called if the member is not found.

Download for an implementation.fuzzyfy.py

https://lodr.github.io/presentations/method-dispatching/demo/fuzzyfy.py

Restricted Proxy Subclasses

From a base class, I want to derive another with
partial access to its public members.

Provided a base class and a whitelist of members, only allow access

to a member if it is in the whitelist.

So, as it's a metter of access, I need to intercept all access.

def __getattribute__(self, name):
 if name[0] != '_' and name not in whitelist:
 raise RuntimeError()

 return base.__getattribute__(self, name)

def __setattr__(self, name, value):
 if name[0] != '_' and name not in whitelist:
 raise RuntimeError()

 return base.__settattr__(self, name, value)

Download for an implementation.restricted.py

https://lodr.github.io/presentations/method-dispatching/demo/restricted.py

Private members

Deny the access to a member starting by _ if it's
being used outside the class' (or subclasses')

declarations.

When accessing a member, inspect the current stack to locate the

line of code accessing the member and see if the line is part of the

code for the class. If not, deny the access.

Use the module inspect to get the sourcefile and source lines from

a class.

class A():
 """

 Source code

 """
 def f():
 print('Hello!')

import inspect
lines, offset = inspect.getsourcelines(A)

Copy to a file or it won't work.

Use in combination with __mro__ to get the source files and source

blocks for all classes in the class hierarchy.

klass = type(obj)
ignore built-in object class
klasses = list(klass.__mro__[:-1])
sources = []
for k in klasses:
 sourcefile = inspect.getsourcefile(k)
 lines, offset = inspect.getsourcelines(k)
 end = offset + len(lines)
 sources.append(sourcefile, offset, end)

Use getouterframes() and currentframe() to get a list of the

current execution stack.

def a():
 b()

def b():
 c()

def c():
 import inspect
 frames = inspect.getouterframes(
 inspect.currentframe())
 print(list(frames))

Each entry is a tuple including the sourcefile and line number.

Download for an implementation.protected.py

Jump to about privates in Python.the infography

https://lodr.github.io/presentations/method-dispatching/imgs/python-privates.png
https://lodr.github.io/presentations/method-dispatching/demo/protected.py

Further reading
Alan Kays on Messaging

Smalltalk's dispatching

Ptyhon datamodel

Smart Command Line Opttions Parsing

Git implementation of Levenshtein distance

http://en.wikipedia.org/wiki/Dynamic_dispatch#Smalltalk_implementation
http://741mhz.com/smart-getopt/
https://github.com/gitster/git/blob/master/levenshtein.c
http://c2.com/cgi/wiki?AlanKayOnMessaging
https://docs.python.org/3.4/reference/datamodel.html

About me

me
Salvador de la Puente González

twitter

My web sites
@salvadelapuente

http://unoyunodiez.com
http://github.com/lodr

https://twitter.com/salvadelapuente
http://unoyunodiez.com/
http://github.com/lodr

